The van der Waals equation is (P + a/V²)(V – b) = RT. Given P = 10⁵ Pa, T = 300 K, R = 8.314 J/mol·K, a = 0.4 Pa·m⁶/mol², b = 0.02 m³/mol:
Solve (10⁵ + 0.4/V²)(V – 0.02) = 8.314 × 300 = 2494.2. Assume V ≈ RT/P (ideal gas approximation) = 2494.2 / 10⁵ = 0.02494 m³. Iterating:
(10⁵ + 0.4/0.02494²)(0.02494 – 0.02) ≈ (10⁵ + 643)(0.00494) ≈ 2494, which is close. Thus, V ≈ 0.0247 m³.